On homogeneous Landsberg surfaces

نویسندگان

چکیده

In this paper, we study the well-known unicorn problem for Finsler metrics. First, prove that every homogeneous Landsberg surface has isotropic flag curvature. Then by using particular form of curvature, a rigidity result on surfaces. Indeed, is Riemannian or locally Minkowskian. Thus, give an affirmative answer to Xu-Deng's conjecture in two-dimensional manifolds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally homogeneous structures on Hopf surfaces

We study holomorphic locally homogeneous geometric structures modelled on line bundles over the projective line. We classify these structures on primary Hopf surfaces. We write out the developing map and holonomy morphism of each of these structures explicitly on each primary Hopf surface.

متن کامل

Special Homogeneous Linear Systems on Hirzebruch Surfaces

The Segre-Gimigliano-Harbourne-Hirschowitz Conjecture can be naturally formulated for Hirzebruch surfaces Fn. We show that this Conjecture holds for imposed base points of equal multiplicity bounded by 8. 1. Linear systems on Hirzebruch surfaces Our goal is to prove Conjecture 4 for linear systems on Hirzebruch surfaces with imposed base points of equal multiplicity bounded by 8. This Conjectur...

متن کامل

Locally homogeneous rigid geometric structures on surfaces

We study locally homogeneous rigid geometric structures on surfaces. We show that a locally homogeneous projective connection on a compact surface is flat. We also show that a locally homogeneous unimodular affine connection ∇ on a two dimensional torus is complete and, up to a finite cover, homogeneous. Let ∇ be a unimodular real analytic affine connection on a real analytic compact connected ...

متن کامل

On BC-generalized Landsberg Finsler metrics

Equality of hh -curvatures of the Berwald and Cartan connections leads to a new class of Finsler metrics, socalled BC-generalized Landsberg metrics. Here, we prove that every BC-generalized Landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.

متن کامل

Comment on the Shiner–Davison–Landsberg Measure

The complexity measure from Shiner et al. [Physical Review E 59, 1999, 1459–1464] (henceforth abbreviated as SDL-measure) has recently been the subject of a fierce debate. We discuss the properties and shortcomings of this measure, from the point of view of our recently constructed fundamental, statistical mechanics-based measures of complexity Cs (γ, β) [Stoop et al., J. Stat. Phys. 114, 2004,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2021

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2021.104314